4.3 Device model of MOSFET

Mathematical model of MOSFET for a circuit simulation

Model of passive components

The passive elements is characterized by one parameter, if you do not consider the temperature coefficient.

Model of semiconductor devices

A device model and model parameters of semiconductor devices

Model of pn junction

The parameters R_S , $C_{PN}(0V)$, I_S , and V_B are estimated by a measured characteristics.

Device model of MOSFET

The device model is defined as a set of formulas: I-V characteristics of MOSFET and pn junction, C-V characteristics of parasitic capacitances, and series resistances.

Differences of circuit simulation and logic simulation

- Circuit simulation
 - is used for a detailed verification of analog and digital circuits.
 - requires a transistor schematic and a wave form of an input signal.
 - finds a numerical solution of a circuit equations.
 - is a close-to-reality simulation based on a semiconductor characteristics.
 - takes very long time to calculate.
- Logic simulation
 - is used for a functional and timing verification of a logic.
 - requires a HDL description and a input vector of logic values.
 - find a timing diagram with time slice accuracy.
 - can be estimate a circuit performance of a logic, but the simulation accuracy depends on that of the propagation delay data of each gate.
 - is completed in a relatively short time.
 - has no ability to simulate an analog circuit.