2.1 Structure and functions of MOSFET

Principle of MOSFET

2.1.1 PN junction

Conductivity type of semiconductor

The number of carriers equals to the number of accepters or donors.

Electric field of pn junction

A pn junction is formed at a boundary between the p-type semiconductor and the n-type semiconductor.

Free electrons and holes are recombined in the vicinity of the pn junction, and a depletion layer of carriers are formed.

The ionized donors and acceptors forms the built-in electric field in the depletion layer.

$$\frac{dE}{dx} = \frac{\rho}{\epsilon_0 \varepsilon_{Si}} \quad \text{(Gauss's law)}$$

Voltage of pn junction

Note: The current does not flow through the pn junction because the electrostatic force and the diffusion of the carrier are balanced in the equilibrium state.

7

用語解説

- Equilibrium state
 - 平衡状態(熱平衡状態)
 - 外部系とのエネルギーの授受が無い状態
- Steady state
 - 定常状態
 - 時間的変化が無い状態(交流電圧振幅や周波数が変化しない状態も含む)
- Transient state
 - 過渡状態
 - 時間的変化がある状態

Potential energy of electron and hole

Forward biasing of pn junction

Reverse biasing of pn junction

I-V characteristic of pn junction

2.1.2 Structure of MOSFET

Structure of MOSFET

MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor)

Switching of n-ch MOSFET

The free electrons are generated by lowering the potential at the SiO_2/Si interface (MOS interface) and the source and drain is electrically conducted.

Switching of p-ch MOSFET

The holes are generated by lowering the potential at the SiO_2/Si interface (MOS interface) and the source and drain is electrically conducted.

OFF state of n-ch MOSFET

The current flow is blocked by the pn junction that is reversebiased.

ON state of n-ch MOSFET

The electron flows through the channel at MOS interface.

ON state of p-ch MOSFET

The hole flows through the channel at MOS interface.

The origin of the electrode name

Note: Transistor = Trans-resistor

Distribution of electron in MOSFET 1

and the electron cannot flow through the p-type region.

Distribution of electron in MOSFET 2

The height of the potential barrier is decreased by applying V_G and the electron flows from the source to the drain.