2.1 Structure and functions of MOSFET

Principle of MOSFET

2.1.1 PN junction

Electrical conductivity control 1

Periodic table

III	IV	V	
В	C	N	
Al	Si	P	
Ga	Ge	As	
In	Sn	Sb	

* A free electron (自由電子) is not bound to an atom.

Free Electron (*)

Crystal of Si

P(Phosphorous)-doped Si (*) Simplified sketch

* Doping: Introducing an impurity

Electrical conductivity control 2

Periodic table

B C N Al Si P Ga Ge As	III	IV	V	
	В	С	N	
Ga Ge As	A1	Si	P	
	Ga	Ge	As	
In Sn Sb	In	Sn	Sb	

* A hole is an ionized Si atom by transferring a valence electron to an impurity.

Electron (Blue dot)-

Crystal of Si

B(Boron)-doped Si (*)

* Doping: Introducing an impurity

Hole (*)

Simplified sketch

Conductivity type of semiconductor

The number of carriers equals to the number of accepters or donors.

Electric field of pn junction

A pn junction is formed at a boundary between the p-type semiconductor and the n-type semiconductor.

Free electrons and holes are recombined in the vicinity of the pn junction, and a depletion layer of carriers are formed.

The ionized donors and acceptors forms the built-in electric field in the depletion layer.

$$\frac{dE}{dx} = \frac{\rho}{\epsilon_0 \epsilon_{Si}} \quad \text{(Gauss's law)}$$

Depletion layer (空乏層)

Voltage of pn junction

Note: The current does not flow through the pn junction because the electrostatic force and the diffusion of the carrier are balanced in the equilibrium state.

用語解説

- Equilibrium state
 - 平衡状態(熱平衡状態)
 - 外部系とのエネルギーの授受が無い状態
- Steady state
 - 定常状態
 - 時間的変化が無い状態(交流振幅や周波数が変化しない状態も含む)
- Transient state
 - 過渡状態
 - 時間的変化がある状態

Potential energy of electron and hole

Distribution of carriers

The carriers are gathered on the low-potential side.

Forward biasing of pn junction

Reverse biasing of pn junction

I-V characteristic of pn junction

2.1.2 Structure of MOSFET

Structure of MOSFET

MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor)

Switching of n-ch MOSFET

The free electrons are generated by lowering the potential at the SiO₂/Si interface (MOS interface) and the source and drain is electrically conducted.

Switching of p-ch MOSFET

The holes are generated by lowering the potential at the SiO₂/Si interface (MOS interface) and the source and drain is electrically conducted.

OFF state of n-ch MOSFET

The current flow is blocked by the pn junction that is reversebiased.

ON state of n-ch MOSFET

The electron flows through the channel at MOS interface.

ON state of p-ch MOSFET

The hole flows through the channel at MOS interface.

The origin of the electrode name

Note: Transistor = Trans-resistor

Distribution of electron in MOSFET 1

n-ch MOSFET

The potential barrier of p-type semiconductor is enough high and the electron cannot flow through the p-type region.

Distribution of electron in MOSFET 2

The height of the potential barrier is decreased by applying $V_{\rm G}$ and the electron flows from the source to the drain.