Summary of Chapter 8-11

Mixed signal LSI, Akio Kitagawa, Kanazawa University

1. Current mirror

Constant voltage circuit

$$V_{DS} = V_{GS}$$

$$V_{DS} \ge V_{GS} - V_{Tn} = \Delta_{OV}$$

Therefore, M1 is driven in the saturation region. This circuit can output the voltage V_{GS} controlled by I_{ref} .

In the saturation region

 $I_{D} = I_{ref} = \frac{\beta_{1}}{2} (V_{GS} - V_{Tn})^{2} \qquad \begin{bmatrix} I_{D} = \text{const.} & \rightarrow V_{GS} = \text{const.} \\ V_{GS} = \text{const.} & \rightarrow I_{D} = \text{const.} \end{bmatrix}$ $V_{GS}(I_{ref}) = V_{Tn} + \sqrt{\frac{2I_{ref}}{\beta_{n}}} = V_{Tn} + \Delta_{OV} \quad (\Delta_{OV}: \text{Overdrive voltage})$

Current mirror

Sink and source of the current mirror

Layout sample of the current mirror

Deviation from the ideal characteristics

The channel resistance of M2 is not infinite, therefore, M2 cannot work as an ideal current source. The higher drain resistance of M2 is preferable to improve the characteristic of the current source.

2. Basic amplifier

Signal transmission and common terminal

Configurations of a basic amplifiers

Types of amplifiers

	Common source	Common gate	Common drain
Source	Common	Input	Output
Gate	Input	Common	Input
Drain	Output	Output	Common
Function	Voltage Amplifier H→L impedance	Voltage Amplifier L→H trans-impedance	DC level shift H→L impedance

Voltage gain of amplifiers

Small-signal equivalent circuit (Behavior model)

$$Av \equiv \frac{v_{out}}{v_{in}} = \frac{-(-G_m \cdot v_{in}) \cdot R_{out}}{v_{in}} = G_m \cdot R_{out}$$

Assumption
$$\begin{cases} \text{Impedance of input signal} = 0\\ \text{Impedance of output load} = \infty \end{cases}$$

Definition of
$$G_m$$
, R_{out}

$$\begin{cases}
G_m = -\frac{i_{out}}{v_{in}}\Big|_{v_{out}=0} \\
R_{out} = \frac{v_{out}}{i_{out}}\Big|_{v_{in}=0}
\end{cases}$$

11

Common-source (CS) amplifier

Current source load I_{DS0} (MOSFET current source)

- Bias current I_{DS0} is supplied to M1

- Current source works as a large load resistance (Large voltage gain)

Voltage gain of CS amplifier

$$A_{v} \equiv G_{m} \cdot R_{out} = \frac{-g_{m1}}{g_{ds1} + g_{ds2}} = -g_{m1} \cdot (r_{ds1} / / r_{ds2}) = -g_{m1} \frac{r_{ds1} r_{ds2}}{r_{ds1} + r_{ds2}}$$

Setting of the bias current (1)

I-V characteristic in saturation region $(V_{DS} > V_{GS} - V_{T}) \qquad I_{DS} = \frac{1}{2} \frac{W}{L} \mu_{n} \cdot C_{OX} (V_{GS} - V_{T})^{2} \{1 + \lambda (V_{DS} - \Delta_{OV})\}$ $= \frac{\beta}{2} (V_{GS} - V_{T})^{2} \{1 + \lambda (V_{DS} - \Delta_{OV})\}$ \bigcup $g_{m} \equiv \frac{\partial I_{DS}}{\partial V_{GS}} \approx \beta (V_{GS} - V_{T}) = \sqrt{2\beta \cdot I_{DS}}$ $g_{ds} \equiv \frac{\partial I_{DS}}{\partial V_{DS}} = \frac{\beta}{2} (V_{GS} - V_{T})^{2} \lambda \approx \lambda \cdot I_{DS}$

Setting of the bias current (2)

NOTE: gm/I_{DS} is a reference index of the voltage gain in saturation region.

Bias circuit for CS amplifier

AC coupling of CS amplifier

2. Cascode amplifier

Gain enhancement technique

•
$$A_V = G_m \cdot R_{out} = -\frac{\sqrt{2\beta_1}}{\lambda_1 + \lambda_2} \frac{1}{\sqrt{I_{DS}}}$$
 (CS amplifier)

- The high voltage gain is achieved by the large β_1 or small I_{DS}, but the small I_{DS} or small Δ_{OV} increases influence of the process variation and the large β_1 or large W causes a Miller effect.
- The cascode technique is useful for the gain enhancement by increasing the output resistance of amplifiers without additional bias current.

Miller effect

The AC characteristic of amplifiers is remarkably degraded by the Miller effect.

Assuming that the input impedance is very large.

Trans-impedance with CG amplifier

1_{out}

Cascode amplifier

$$\begin{aligned} A_V &= G_m R_{out} \\ G_m &= -g_{m1} \\ R_{out} &= \{(g_{m2} r_{ds2}) r_{ds1}\} / / \{(g_{m3} r_{ds3}) r_{ds4}\} \end{aligned}$$

If
$$r_{ds1} = r_{ds4}, r_{ds2} = r_{ds3}, g_{m2} = g_{m3},$$

$$A_V = -\frac{1}{2}g_{m1}r_{ds1}g_{m2}r_{ds2}$$

Voltage gain of CS amp. ~ 30 dB (= $g_{m1} \cdot r_{ds1}$) Voltage gain of cascode amp. > 60dB without additional power consumption.

However, the cascode circuit designed for low VDD is disadvantageous for the output swing, because the stacked MOFETs should be driven in the saturation region.

Cascode current mirror

Bias circuit for cascode amplifier

3. AC performance of amplifiers

AC characteristics of CS amplifier

- A main factor to decide an AC characteristic
 - Output capacitance
 - Capacitive Load + Parasitic capacitance
 - Input capacitance
 - Parasitic capacitance
 - Input-output capacitance
 - Parasitic capacitance

(AC characteristic: The small-signal frequency response)

Parasitic capacitance

High frequency small-signal equivalent circuit of CS amplifier

Influence of the output capacitance

Bode diagram of the CS amplifier

Bias dependence of a pole frequency

$$\begin{cases} g_{m1} = \sqrt{2\beta_1 I_{DS1}} \\ r_{ds1} / / r_{ds2} = \frac{1}{g_{ds1} + g_{ds2}} = \frac{1}{(\lambda_1 + \lambda_2) \cdot I_{DS1}} \end{cases}$$

$$A_{0} = g_{m1}(r_{ds1} // r_{ds2}) = \frac{\sqrt{2\beta_{1}}}{\lambda_{1} + \lambda_{2}} \frac{1}{\sqrt{I_{DS1}}} \qquad \text{(DC gain)}$$
$$\omega_{po} = \frac{1}{C_{o}(r_{ds1} // r_{ds2})} = \frac{(\lambda_{1} + \lambda_{2}) \cdot I_{DS1}}{C_{o}} \qquad \text{(pole frequency)}$$

$$\omega_{po} \cdot A_{_0}^2 = \frac{1}{C_o} \frac{2\beta}{(\lambda_1 + \lambda_2)}$$

The product of the ω_{po} and A_0^2 is independent on the bias current.

Unity gain frequency ω_u (= BGP)

NOTE: $\omega_u \doteq \text{GBP}$ (Gain Bandwidth Product)

Influence of the input capacitance

Influence of the input-output capacitance (1)

$$\begin{cases} v_{out} = (r_{ds1} // r_{ds2})(i_f - i_o) \\ i_f = j\omega \cdot C_{gd}(v_{in} - v_{out}) \end{cases}$$

Influence of the input-output capacitance (1)

by competitive current
$$i_o$$
 and i_f Normally $(r_{ds1}//r_{ds2}) < 1/g_{m1}$,

$$\int \int C_{gd} C_{gd}$$

$$= \frac{(r_{ds1} // r_{ds2})g_{m1}(1 - j\omega \cdot \frac{C_{gd}}{g_{m1}})}{1 + j\omega \cdot C_{gd}(r_{ds1} // r_{ds2})} \stackrel{=}{=} \frac{(r_{ds1} // r_{ds2})g_{m1}(1 - j\omega / \omega_z)}{1 + j\omega / \omega_{pgd}}$$

i_f : Forward transmission signal from G to D i_o : Normally amplified signal

The balance of i_f and i_o generate the zero.

Summary of AC characteristics of the CS amplifier

$$A_{V} = \frac{A_{0}(1 - j\omega/\omega_{z})}{(1 + j\omega/\omega_{pi})(1 + j\omega/\omega_{po})}$$

2 -pole and 1-zero transfer function

(The ω_{pgd} is placed in the very high frequency, thus it is usually negligible.)

NOTE: Pole in the left half plane and zero in the right half plane turns phase -90 degrees.

Phase characteristic

Gain error of circuits and GBP

Frequency dependence of the gain error

GBP as a figure of merit (FOM) of amplifiers

4. Phase compensation

NFB (Negative Feedback)

- 1. Precise control of transfer functions and stabilization of the gain
- 2. Suppression of the distortion
- 3. Extension of the frequency range
- 4. Suppression of the noise output to the output
- 5. Control of the input resistance and output resistance

Control of the gain and bandwidth

NFB applied to multi-stage amplifier

The effect of NFB is remarkable for the multi-stage amplifier, but ω_{p1} and ω_{p2} may be allocated in the neighbor frequency.

Stability of the NFB circuit

Second ω_p or ω_z may causes the positive feedback and there is a problem in the circuit stability.

- Long transient response
- Oscillation

The phase change of the loop gain should not exceed 180 degrees.

Stability condition

Gain margin and phase margin

Phase compensation

The 2-stage amplifier has 2 or more corners in the frequency response, that is, the phase rotation may exceed 180 degrees.

The phase compensation (位相補償) is used to increase the phase margin or the gain margin.

Example of phase compensation 1

The corner of the amplifier is moved by the feedback technique with Z_i and Z_c. The denominator of the transfer function *V*out is affected by the feedback loop.

$$A = \frac{A_0}{(1 + j\omega/\omega_{p1})(1 + j\omega/\omega_{p2})} \leftarrow 2 \text{ corners}$$

$$v_{out} - v_e = Z_c i_c \quad \Box \qquad i_c = \frac{1}{Z_c} \left(1 + \frac{1}{A}\right) v_{out} \cong \frac{1}{Z_c} v_{out} \quad (A \gg 1)$$

$$v_{out} = -Av_e$$

$$Gain = \frac{v_{out}}{v_{in}} = \frac{-A}{1 + \frac{Z_i}{Z_c}A} = \frac{-A_0}{(1 + j \,\omega/\omega_{p1}) \left(1 + j \,\omega/\omega_{p2}\right)} + \frac{Z_i}{Z_c}A_0$$
Added

Example of phase compensation 2

$$\begin{aligned} Gain &= \frac{-A_{0}}{(1+j\,\omega/\omega_{p1})\,(1+j\,\omega/\omega_{p2}) + \frac{Z_{i}}{Z_{c}}A_{0}} \\ &= \frac{-A_{0}}{1+j\omega\left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) - \frac{\omega}{\omega_{p1}}\frac{\omega}{\omega_{p2}} + \frac{Z_{i}}{Z_{c}}A_{0}}{-A_{0}} + \begin{array}{l} \text{The corner of the 2nd pole } \omega_{p2} \\ &\text{is multiplied by } x. \\ &= \frac{-A_{0}}{1+j\omega\left(\frac{1}{\omega_{p1}/x} + \frac{1}{\omega_{p2}} \cdot x\right) - \frac{\omega}{\omega_{p1}}\frac{\omega}{\omega_{p2}}} + j\omega\left(\frac{1-x}{\omega_{p1}} + \frac{1-\frac{1}{x}}{\omega_{p2}}\right) + \frac{Z_{i}}{Z_{c}}A_{0}}{j\omega\left(\frac{1-x}{\omega_{p1}} + \frac{1-\frac{1}{x}}{\omega_{p2}}\right) + \frac{Z_{i}}{Z_{c}}A_{0}} = 0 \\ &\text{When } Z_{i} = R_{i}, \quad Z_{c} = \frac{1}{j\omega C_{c}}, \quad \frac{Z_{i}}{Z_{c}}A_{0} = j\omega C_{c}R_{i}A_{0} = -j\omega\left(\frac{1-x}{\omega_{p1}} + \frac{1-\frac{1}{x}}{\omega_{p2}}\right) \end{aligned}$$

Quiz

The amplifier with the following characteristics, $\omega_{p1} = 1MEGrad/s$, $\omega_{p2} = 10MEGrad/s$, $A_0 = 40dB$, $R_i = 3.7MEG\Omega$. Find the value of the capacitor Cc in order to move the corner to $\omega_{p2} = 100MEGrad/s$.

$$\omega_{p2} = 10 \text{MEG} rad/s \xrightarrow{x=10}{\longrightarrow} = \omega_{p2} = 100 \text{MEG} rad/s$$

$$j\omega C_c R_i A_0 = -j\omega \left(\frac{1-x}{\omega_{p1}} + \frac{1-\frac{1}{x}}{\omega_{p2}}\right)$$

$$C_c = -\frac{1}{R_i A_0} \left(\frac{1-x}{\omega_{p1}} + \frac{1-\frac{1}{x}}{\omega_{p2}}\right) = -\frac{1}{3.7 \text{MEG} \cdot 100} \left(\frac{1-10}{1 \text{MEG}} + \frac{1-\frac{1}{10}}{10 \text{MEG}}\right)$$

$$= 24.1 fF$$