15. Discrete time analog circuits

Kanazawa University Microelectronics Research Lab. Akio Kitagawa

15.1 Analog switch

Analog switch (CMOS transmission gate)

 g_{dsn} , g_{dsp} : Channel conductance of n-ch MOSFET and p-ch MOSFET

Conductance of analog switch There is a minimum conductance at the middle of VDD and VSS. n-ch MOSFET Conductance [S]

p-ch MOSFET

$$g_{dsp} = \frac{1}{r_{dsp}} = \frac{\partial I_{dsp}}{\partial V_{in}} = \beta_p \{ (V_{Tp} - VSS) + 3V_{in} \}$$

Minimum conductance is degraded by the low power supply voltage and high V_{Tn} and V_{Tp} .

ON-resistance of analog switch

Quiz:

Find a ON-resistance of CMOS Switch, assuming that $|V_{Tp}| = V_{Tn} = 0.3$ (VDD - VSS), $\mu_p C_{OX} = 100$ (mA/V²), and VDD - VSS = 0.5 (V).

Answer:

Minimum conductance of CMOS switch is observed at $V_{in} = 0$ V, the conductance is minimum, assuming that $\beta_n = \beta_p$.

$$g_{dsn} + g_{dsp} = \beta_n \{ (VDD - V_{Tn}) - 3V_{in} \} + \beta_p \{ (V_{Tp} - VSS) + 3V_{in} \}$$

$$= \beta_p \{ (VDD - VSS) - \beta_p \cdot 0.3 (VDD - VSS) \}$$

$$= 0.7\beta_p (VDD - VSS)$$

$$= 0.35\beta_p = 35\frac{W_p}{L_p}\mu S$$

$$R_{ON} = \frac{1}{g_{dsn} + g_{dsp}} = 29\frac{L_p}{W_p}k\Omega$$

NOTE: Normally, $R_{ON} = \sim 10k\Omega^*(L/W)_5$

Clock feedthrough error

The error is raised by the charge transfer from the sampling capacitor to the parasitic capacitance of MOSFET \propto L.

of C_H is partially transferred to C_{gd} and V2 is decreased.

Charge injection error

The error is raised by the charge transfer from the sampling capacitor to the channel of MOSFET \propto LW.

When the carrier in the channel of MOSFET recombine, the charge is injected from $C_{\rm H}$ and V2 is decreased.

time

Cancellation of errors

2. Set-off of the common-mode error with the differential amplifier

15.2 Clock circuit

Non-overlapping clock generation

 ϕ 1: V_{in} = Q/C (Sampling of input voltage) ϕ 2: V_{out} = -Q/C (Inversion and output)

Even if only slightly 'H' level of $\phi 1$ and $\phi 2$ is overlapped, the sampled charge Q is leaked to VCM line. The non-overlapped clock signals is employed for the $\phi 1$ and $\phi 2$. Non-overlapping Clock Generator

10

Complementary clock generation

A complementary clock generation circuit is employed to generate the 2-phase clock without a timing error.

The delay time is adjusted by the number of stages.

15.3 Clocked comparator

Function of analog comparator

- If $(V_{in}^+ > V_{in}^-)$, then $V_{out} = VDD$ (Logic level = 'H')
- If $(V_{in}^+ < V_{in}^-)$, then $V_{out} = VSS$ (Logic level = 'L')

Specification of a comparator

Parameter	Design constraint	Description
VDD/VSS	max/typ/min	
I _{BIAS}	max	
I _{ACTIVE}	max	dependent on the clock frequency
$\mathbf{f}_{\mathbf{S}}$	typ	Clock frequency
Common-mode input	min/max	
range		
Input-referred offset	max	$V_{OS} \ll V_{LSB}/2$
V _{OS}		
Gain	min	$Gain >> (VDD - VSS)/V_{LSB}$
Settling time	max	$>> f_S$
Load capacitance	typ	

Block diagram of a comparator

Decision circuit Preamplifier (positive feedback) Outputbuffer

Wide Swing Comparator

15.4 Dynamic comparator

Dynamic comparator

- Small area
- High precision (self-reference)
- Wide input range
- Cancelling noise and drift in lower frequency than the clock frequency

If the threshold voltage V_M of the inverter is fluctuated, the fluctuation of the offset voltage is negligible. Because only a comparison result Δ is amplified. The voltage gain of inverter A_V is normally low (~20dB). The gain of the comparator can be increased by using additional inverter stage.

21

Practical implementation of the dynamic comparator

Full-differential dynamic comparator

Clock phase	State	
ϕ_1	Sample V ₁	
ϕ_2	Compare with V_2	

Equivalent circuit with comparator

The discrete time OPA can be replaced with high-precision comparator to implement the differential amplifier, because it is difficult to design the high gain OPA with the fine processes. 24

15.5 Dynamic amplifire

Dynamic analog circuits can avoid a mismatch error of MOSFET.

Discrete time dynamic current mirror

Store Mirror Store Mirror

There is no mismatch error because the M1 is used for a constant voltage source and a current sink.

Continuous time dynamic current mirror

Dynamic class-AB amplifier

 ϕ 1: Storing phase of the bias condition for the quiescent current.

φ2: Amplification phase.

The biasing scheme makes the amplifier less sensitive to V_T and VDD variations.

Example of dynamic class-AB amplifier

29

15.6 Active pixel sensor (APS)

Correlated double sampling

The fixed pattern noise (process variation) and switching noise are canceled by each correlated double sampling.

$$\begin{bmatrix} S1 = ON: Q1 = C1Vrst, Q2 = 0\\ S1 = OFF: Q1' = C1Vsig, Q2' = Q1 - Q1'\\ V_{out} = \frac{C1}{C2}(V_{sig} - V_{rst}) \end{bmatrix}$$

